Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 123(1): 15, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060049

RESUMO

Circadian behavioral patterns in mosquitoes can be observed through their locomotor activity, which includes fundamental behaviors such as foraging, mating, and oviposition. These habits, which are fundamental to the life cycle of Anopheles mosquitoes, are closely related to pathogen transmission to humans. While rhythmic cycles of locomotor activity have been described in Anopheles species, no studies have been conducted on Anopheles darlingi species, the main malaria vector in the Amazon region. The aim of this study was to investigate how insemination status, blood meal, and Plasmodium vivax infection affect the locomotor activity of An. darlingi. The experiments were performed with 3- to 10-day-old An. darlingi females, which had been fed with 15% honey solution. These mosquitoes were obtained from the Malaria Vector Production and Infection Platform (PIVEM)/FIOCRUZ-RO. The experimental groups were divided into four categories: virgin vs. inseminated, unfed virgin vs. blood-fed virgin, unfed inseminated vs. blood-fed inseminated, and infected blood vs. uninfected blood. Locomotor activity was monitored using the Flybox equipment, capturing images that were subsequently converted into video to measure the insect activity, using PySoLo software. The periodicity and rhythmicity of mosquito locomotor activity were analyzed using MatLab® software. The locomotor activity of An. darlingi females showed a nocturnal and bimodal pattern under LD conditions. When comparing the insemination states and blood meal, there was a reduction in the locomotor activity in inseminated and blood-fed females. However, the P. vivax+ infection did not increase locomotor activity of An. darlingi species.


Assuntos
Anopheles , Malária Vivax , Malária , Humanos , Animais , Feminino , Plasmodium vivax , Mosquitos Vetores , Inseminação , Comportamento Alimentar
2.
Am J Trop Med Hyg ; 107(4_Suppl): 168-181, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228921

RESUMO

The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.


Assuntos
Anopheles , Malária , Animais , Anopheles/fisiologia , Biologia , Brasil/epidemiologia , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Peru/epidemiologia
3.
Int J Parasitol Drugs Drug Resist ; 17: 150-155, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637981

RESUMO

Human malaria continues to be a public health problem and an important cause of morbidity and mortality in the world. Malaria control is achieved through both individual protection against mosquito bites and drug treatment, which is hampered by the spread of Plasmodium falciparum resistance to most antimalarials, including artemisinin derivatives. One of the key pharmacological strategies for controlling malaria is to block transmission of the parasites to their mosquito vectors. Following this rational, MEFAS, a synthetic hybrid salt derived from artesunate (AS) and mefloquine has been previously reported for its activity against asexual P. falciparum parasites in vitro, in addition to a pronounced reduction in the viability of mature gametocytes. Herein, MEFAS was tested against asexual forms of Plasmodium vivax and for its ability to block malaria transmission in Anopheles darlingi mosquitoes in a membrane feeding assay using P. vivax field isolates. MEFAS demonstrated high potency, with a IC50 of 6.5 nM against asexual forms of P. vivax. At 50 µM, MEFAS completely blocked oocyst formation in mosquitoes, regardless of the oocyst number in the control group. At lower doses, MEFAS reduced oocyst prevalence by greater than 20%. At equivalent doses, AS irregularly reduced oocyst formation and caused only slight inhibition of mosquito infections. These results highlight the potential of MEFAS as a novel transmission-blocking molecule, as well as its high blood schizonticidal activity against P. vivax and P. falciparum field isolates, representing a starting point for further development of a new drug with dual antimalarial activity.


Assuntos
Antimaláricos , Malária Falciparum , Malária Vivax , Malária , Animais , Antimaláricos/farmacologia , Artesunato , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Mefloquina/farmacologia , Plasmodium falciparum , Plasmodium vivax
4.
Trans R Soc Trop Med Hyg ; 103(11): 1174-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18952248

RESUMO

Malaria is currently highly prevalent and restricted to the north of Brazil, and its dynamics are severely affected by human environmental changes, such as the large dam construction recently approved by the Brazilian Government in Rondônia. We studied the mosquito fauna and behavior before hydroelectric construction. Mosquitoes were captured by human landing catches on the riversides of the Madeira River in Porto Velho, Rondônia. A total of 3121 mosquitoes from eight different genera were collected; only Mansonia and Anopheles darlingi were found in all 21 collection sites throughout the night. These results suggest that the riverines of the study area are exposed to malaria.


Assuntos
Culicidae/classificação , Centrais Elétricas , Animais , Brasil , Reservatórios de Doenças , Ecossistema , Humanos , Malária/epidemiologia , Densidade Demográfica , Prevalência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA